Chemistry Module 6 Homework SHOW ALL MATH CALCULATIONS OR NO CREDIT

Module 6

Read pages 163 – 185.

1. Calculate the ratios of the chemicals using the following equation to fill in the table:

$$3Hg + 2P + 4O_2 \rightarrow Hg_3(PO_4)_2$$

Moles of Hg	Moles of P	Moles of O2	Moles of Hg ₃ (PO ₄) ₂
12 moles			
	10 moles		
		12 moles	
	7 moles		

- 2. Write Gay-Lussac's Law. What has to be true for you to use Gay-Lussac's Law in stoichiometry?
- 3. In welding, acetylene gas, C₂H₂, is burned with oxygen gas to produce a hot flame and melt the metal. The reaction is: (Math)

$$2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(g)$$

- a. When 7.50 liters of C₂H₂ are burned with excess oxygen, how many liters of carbon dioxide will be formed?
- b. When 18.0 liters of oxygen are burned with excess C₂H₂, how many liters of water vapor (H₂O) are produced?
- 4. What is a limiting reactant? Why do you need to know which substance is the limiting reactant when you do stoichiometry?
- 5. For the following reaction, if a chemist adds 3.0 moles of Zn to 4.0 moles of HNO₃, what is the limiting reactant? (Math)

$$4~Zn~(s) + 10~HNO_{3}~(aq) \rightarrow 4~Zn(NO_{3})_{2}~(aq) + NH_{4}NO_{3}~(aq) + 3~H_{2}O~(l)$$

6. When iron sulfide is mixed with oxygen, the following reaction occurs:

$$4 \text{ FeS (aq)} + 7 O_2 \text{ (g)} \rightarrow 2 \text{ Fe}_2O_3 \text{ (s)} + 4 \text{ SO}_2 \text{ (aq)}$$

If 15.0 moles of iron sulfide are reacted with 25.0 moles of oxygen, what is the limiting reactant? (Math)

- 7. For the reaction: $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$ How many liters of water vapor can be produced by reacting 6.3 liters of H_2 with 4.7 liters of O_2 ?
 - a. Find the limiting reactant first. Which reactant runs out first?
 - b. Use the limiting reactant to determine the amount of water produced.

Stoichiometry Steps

Set-Up:	Determine which two chemicals are used in the problem.	
Set op.	Calculate the molar mass of each chemical. (Look up the weight on the chart.)	
	A. Change grams to moles.	
Calculate:	B. Trade moles	
	C. Change moles to grams	

- 8. Use this reaction to answer the questions: H₂SO₄ + 2 NaOH → Na₂SO₄ + 2 H₂O A chemist reacts 50.0 grams of sulfuric acid (H₂SO₄) with excess NaOH. How many grams of water will be produced?
 - a. What are the two chemicals you are going to use?
 - b. What is the molar mass of each chemical?
 - c. Convert grams of sulfuric acid to moles. (Grams to moles, divide.)
 - d. Trade moles of sulfuric acid for moles of water. (Use the numbers in the equation.)
 - e. Convert moles of water to grams. (Moles to grams, multiply.)
- 9. A phosphorous fertilizer, CaH₂P₂O₈, can be made using this reaction:

$$Ca_3P_2O_8 + 2H_2SO_4 + 4H_2O \rightarrow CaH_2P_2O_8 + 2CaH_4SO_6$$

If 150.0 grams of H_2SO_4 are reacted with excess $Ca_3P_2O_8$ and water, how many moles of $CaH_2P_2O_8$ (fertilizer) are produced?

- a. What are the two chemicals you are using?
- b. What is the molar mass of each chemical?
- c. Change grams of H₂SO₄ to moles.
- d. Trade moles of H₂SO₄ for moles of fertilizer (CaH₂P₂O₈). How many moles of fertilizer are produced?
- e. Convert moles of fertilizer to grams.
- 10. Methanol, CH₃OH, is made by reacting carbon monoxide with hydrogen gas at high temperature and pressure. (Math)
 - a. Write the balanced equation for the reaction.
 - b. How many grams of carbon monoxide are needed to make 600.0 g of CH₃OH? (Do all the steps.)

11. Calcium can be reacted with nitric acid (HNO3) to produce calcium nitrate (Ca(NO₃)₂) and hydrogen gas. Calcium nitrate is used in cold packs and in some types of concrete mixes. The balanced chemical equation for this reaction is: Ca + 2 HNO3 → Ca(NO₃)₂ + H₂

- a. If a chemist reacts 80.0 grams of calcium with 50.0 grams of nitric acid, which is the limiting reactant?
- b. Use the limiting reactant to determine the number of grams of calcium nitrate produced.
- 12. Copper reacts with sulfur to form copper (II) sulfide. $2 \text{ Cu (s)} + \text{S (s)} \rightarrow \text{Cu}_2\text{S (s)}$ (Math)
 - a. How many grams of Cu₂S will be produced when 100.0 g of Cu are reacted with excess S?
 - b. What is the maximum number of grams of Cu₂S that can be formed when 80.0 g of Cu reacts with 25.0 g of S?
- 13. Explain the difference between empirical formulas and molecular formulas.
- 14. Which of the following are empirical formulas? If the molecular formula is given, write its empirical formula.

a. Sulfuric acid: H₂SO₄ d. Disulfur dichloride: S₂Cl₂

b. Sodium peroxide: Na₂O₂ e. Lauric acid: C₁₂H₂₄O₂

c. Glucose: C₆H₁₂O₆ f. Iron oxide (rust): Fe₂O₃

- 15. A compound has an empirical formula of CH₄N. If its molar mass is 60 g, what is the molecular formula?
- 16. An unknown compound was decomposed into 34.5 g Na, 39.0 g Cr, and 48.0 g O₂.
 - a. How many moles of each element?
 - b. What is the ratio of the moles?
 - c. What is the molecule's empirical formula?
- 17. The compound methyl butanoate smells like apples. A sample of it was decomposed into 58.8 g of carbon, 4.9 g of hydrogen gas, and 15.7 g of oxygen gas. If its molar mass is 243 g/mol, what is its molecular formula?
- 18. Honors: A compound is 29.1% Na, 40.5% S, and 30.4% O. What is the empirical formula of the compound?

- 19. Honors Explain the difference between theoretical yield and actual yield?
- 20. Honors When 84.8 g of iron (III) oxide reacts with an excess of carbon monoxide, then 57.8 g of iron is produced. What is the percent yield for this reaction?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2 Fe(s) + 3 CO_2(g)$$

- 21. Honors A student reacts benzene, C_6H_6 , with bromine, Br_2 , to prepare bromobenzene, C_6H_5Br . $C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$
 - a. What is the theoretical yield of bromobenzene in this reaction when 30.0 g of benzene reacts with 65.0 g of bromine?
 - b. If the actual yield of bromobenzene was 56.7 g, what was the percentage yield?